

TETRAHEDRON LETTERS

Tetrahedron Letters 41 (2000) 7503-7506

Serial double nucleophilic addition of amines to the imidazole nucleus

Shunsaku Ohta,* Tomohisa Osaki, Satoko Nishio, Akemi Furusawa, Masayuki Yamashita and Ikuo Kawasaki

Kyoto Pharmaceutical University, Misasagi Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan

Received 22 June 2000; revised 21 July 2000; accepted 24 July 2000

Abstract

2-(1-Chloro-2,2-dimethylpropyl)-1-methyl-1*H*-imidazole hydrochloride (**2a**·HCl) was treated with an excess of *N*,*N*-dimethylamine at room temperature to give an abnormal addition product, 4,5-bis(*N*,*N*-dimethylamino)-1-methyl-2-(2,2-dimethylpropyl)-2-imidazoline (**4a**), in 74.2% yield together with a normal S_N2 product, 2-(1-*N*,*N*-dimethylamino-2,2-dimethylpropyl)-1-methyl-1*H*-imidazole (**3a**), in 15.0% yield. The former might be evolved from a serial double nucleophilic addition of the secondary amine molecules to the imidazole nucleus, which has been generally considered as an electron-excessive and stable aromatic ring. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: imidazoles; nucleophilic addition; imidazolines; amines; S_N2; X-ray crystallography.

Imidazole has been considered as a basic electron-excessive aromatic; therefore, in general, the nucleus is subjected to ordinary electrophilic reactions, imidazolium salt formation and the nucleo-philic substitutions of lithioimidazoles.^{1,2} Nucleophilic reactions on the imidazole ring with no directly linked electron-withdrawing group such as halogen atom(s) are quite rare[†] and have been commonly performed by the activation of imidazole rings by quaternization.^{1,4} This communication deals with a stereoselective double nucleophilic addition of the secondary amine molecules into the 4- and 5-positions of the imidazole ring under mild conditions without quaternization.

In the course of our investigations on the synthesis of imidazole chiral bidentate ligands for transition metals,[‡] we planned the preparation of 2-(1-amino-2,2-dimethylpropyl)-1-methyl-1H-

* Corresponding author. Fax: +81-75-595-4795; e-mail: sohta@mb.kyoto-phu.ac.jp

[†] For example: an oxidative addition of methanol and benzylalcohol into 2-aminoimidazole derivatives in the presence of NCS has been known³.

^{\ddagger} For example, expecting formation of complex III, the sulfides (IIa, IIb) were initially prepared by the reactions as shown below.

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01283-1

imidazoles (3), which would be easily derived by an S_N^2 reaction of amine with 2-(1-chloro-2,2dimethylpropyl)-1-methyl-1*H*-imidazole (2a). Thus, 2-(1-hydroxy-2,2-dimethyl-propyl)-1methyl-1*H*-imidazole (1a)[§] was chlorinated with thionyl chloride in chloroform to give 2a·HCl as colorless crystals. In order to prepare 2-(1-*N*,*N*-dimethylamino-2,2-dimethylpropyl)-1-methyl-1*H*-imidazole (3a), 2a·HCl was treated with an excess of *N*,*N*-dimethylamine. However, the expected normal S_N^2 product (3a) was obtained in only 15.0% yield, and the unexpected addition product (4a) was obtained in 74.2% yield (Scheme 1).

Scheme	1
	-

The major compound (4a) has the molecular formula $C_{13}H_{28}N_4$ on the basis of high-resolution MS (HRMS) and micro-elemental analysis data of its crystalline picrate (4a·dipicrate), and its ¹H NMR spectrum indicated the presence of two dimethylamino groups and the absence of the olefinic 4- and 5-position protons of the imidazole ring. Finally, the structure of 4a was determined by X-ray crystallographic analysis of its picrate (4a·dipicrate) as shown in Fig. 1.**

Figure 1. ORTEP view of 4a dipicrate. (The trinitrophenoxide portions are omitted)

[§] The alcohols **1a** and **1b** were prepared by treatment of 2-lithio-1-methyl-1*H*-imidazole with pivalaldehyde and isobutyraldehyde in THF at -78° C, respectively.

^{**} Detailed data of the X-ray analysis were sent to Cambridge Crystal Data Centre (UK).

The adduct (4a) might be produced, interestingly, through a double nucleophilic addition of dimethylamine molecules to the electron-rich imidazole ring of 2a, and the plausible reaction mechanism is given in Scheme 2. The addition probably proceeded because of the steric hindrance around the -CHCl- moiety of 2 and the instability of the intermediate (5).

Scheme 2. Plausible reaction mechanism

The reaction of **2a** and **2b** with various amines was examined, and the results are listed in Table 1. The addition products (**4**) were obtained in 28.7-78.2% yields except for the case of benzylamine, a primary amine (entries 1–10). In the cases of benzylamine (entries 4, 9) the corresponding addition products were not isolated, and in the case of N,N'-dimethylethylenediamine (entries 5, 10), the cyclic products (**4e** and **4j**) were obtained in variable yields.

Entry	R ¹ of 2 Amine				Yield of 4 (%)	Yield of 3 (%)		
			R ²	R ³				
1	t-Bu	N,N-Dimethylamine	CH ₃	CH ₃	4a : 74.2 ^a	3a : 15.0 ^a		
2	t-Bu	Pyrrolidine	-(CH ₂) ₄ -	-	4b : 67.9 ^a	3b : 4.8 ^a		
3	t-Bu	Piperidine	-(CH ₂) ₅ -		4c : 60.8 ^a	3c : 13.4 ^a		
4	t-Bu	Benzylamine	$C_6H_5CH_2$	Н	_c	3d : 67.5 ^a		
5	<i>t</i> -Bu	CH ₃ NH(CH ₂) ₂ NHCH ₃	CH ₃	-(CH ₂) ₂ NHCH ₃	4e ^d : 78.2 ^a	e		
6	<i>i</i> -Pr	N,N-Dimethylamine	CH ₃	CH ₃	4f : 63.9 ^b	3f : 17.1 ^b		
7	<i>i</i> -Pr	Pyrrolidine	-(CH ₂) ₄ -	5	4g : 57.5 ^b	3f : 7.0 ^b		
8	<i>i</i> -Pr	Piperidine	-(CH ₂) ₅ -		4h : 61.1 ^b	3h : 17.3 ^b		
9	<i>i</i> -Pr	Benzylamine	$C_6H_5CH_2$	Н	_c	3i ^b : 36.2		
10	<i>i</i> -Pr	CH ₃ NH(CH ₂) ₂ NHCH ₃	CH ₃	-(CH ₂) ₂ NHCH ₃	4j ^d : 28.7 ^b	_e		

Table 1 Reaction of **2a**·HCl and **2b**·HCl with various amines

^a Isolated yield from 2a·HCl.

^b Isolated yield from **1b**.

^c The expected product 4d (entry 4) or 4i (entry 9) was not isolated.

^d Product

$$(\begin{array}{c} CH_3 \\ I \\ H \\ N \\ N \\ H \\ H \\ CH_3 \end{array}) \stackrel{R_1}{\longrightarrow} R_1$$

^e Expected product

 $\overbrace{\substack{N \\ CH_3 \\ CH_3}}^{N} \overbrace{\substack{N \\ CH_3}}^{R_1} _{N(CH_2)_2 NHCH_3}$

Preparation of a C_2 -symmetry chiral ligand from **4a** may be an interesting subject for investigation and we are now examining an application of the present addition to carbanion-type nucleophiles and other azoles.^{††}

Reaction of 2a with N,N-dimethylamine (typical procedure). Aq 50% Me₂NH (3 ml) was added to a solution of **2a** (3 mmol) in THF (3 ml) at 0°C. Stirring was continued for 3 h at 0°C. Water (1.5 ml) was added, and the mixture was extracted with AcOEt (20 ml×3). The organic layer was dried over Na₂SO₄ and evaporated to give an oily residue, which was purified by column chromatography (activated alumina) to give **3a** (AcOEt/n-hexane = 1/1, 88 mg, 15.0%) as the first fraction and 4a (AcOEt, 535 mg, 74.2%) as the second fraction. 3a: oily product. ¹H NMR (400 MHz, in CDCl₃) δ 1.06 (s, 9H, -C(CH₃)₃), 2.34 (s, 6H, -N(CH₃)₂), 3.38 (s, 1H, $-CHN(CH_3)_2$, 3.64 (s, 3H, NCH₃), 6.81 (d, 1H, J=1.3 Hz, Im–H), 7.05 (d, 1H, J=1.3 Hz, Im–H). IR (CHCl₃): 2926, 1476 cm⁻¹. LR-EIMS m/z (relative intensity): 195 [M⁺, 5.5], 138 (100). HR-EIMS m/z: calcd for C₁₁H₂₁N₃, 195.1735. Found: 195.1732. 4a: oily product. ¹H NMR (400 MHz, in CDCl₃) δ 1.08 (s, 9H, -C(CH₃)₃), 2.21 (d, 1H, J=13.6 Hz, -CH₂C(CH₃)₃), 2.24 (s, 6H, $-N(CH_3)_2$), 2.26 (d, 1H, J=13.7 Hz, $-CH_2C(CH_3)_3$), 2.30 (s, 6H, $-N(CH_3)_2$), 2.90 (s, 3H, -NCH₃), 3.96 (d, 1H, J=3.8 Hz, -CHN(CH₃)₂), 4.25 (d, 1H, J=3.8 Hz, -CHN(CH₃)₂). IR (CHCl₃): 2920, 1585 cm⁻¹. LR-EIMS m/z (relative intensity): 240 [M⁺, 1.7], 138 (100). HR-EIMS m/z: calcd for C₁₃H₂₈N₄, 240.2314. Found: 240.2309. 4a·dipicrate, mp 147.0–150.0°C (recrystallized from MeOH). Anal. calcd for C₂₅H₃₄N₁₀N₁₄: C, 42.98; H, 4.91; N, 20.05. Found: C, 43.13; H, 4.95; N, 19.34. X-ray crystallographic data, triclinic; P-1(#2); a=12.2412(8), b = 13.3569(8), c = 10.9801(4) Å, $\alpha = 92.526(4), \beta = 94.827(4), \gamma = 65.166(5)^{\circ}; V = 1623.4(2)$ Å³; $Z=2; D_{calc}=1.429 \text{ g/cm}^3; \lambda(Cu \text{ K}\alpha)=1.54178 \text{ Å}; \mu(Cu \text{ K}\alpha)=10.20 \text{ cm}^{-1}; F(000)=732.00;$ T = 296 K; R = 0.061 ($R_w = 0.102$) for 3505 observations.

Acknowledgements

This research was financially supported in part by the Frontier Research Program of the Ministry of Education, Science, Sports and Culture of Japan.

References

- 1. Grimmett, M. R. Advances in Imidazole Chemistry. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R.; Boulton, A., Eds. Academic: New York, 1980; Vol. 27, pp. 241–326.
- For example: (a) Ohta, S.; Hayakawa, S.; Nishimura, K.; Okamoto, M. Chem. Pharm. Bull. 1987, 35, 1058–1069.
 (b) Ohta, S.; Yamamoto, T.; Kawasaki, I.; Yamashita, M.; Katsuma, H.; Nasako, R.; Kobayashi, K.; Ogawa, K.; Chem. Pharm. Bull. 1992, 40, 2681–2685. (c) Ohta, S.; Yamamoto, T.; Kawasaki, I.; Yamashita, M.; Nagashima, Y.; Yoshikawa, T. Chem. Pharm. Bull. 1994, 42, 821–825. (d) Iddon, B. Heterocycles 1985, 23, 417–443 and references cited therein.
- 3. Olofson, A.; Yakushijin, K.; Horne, D. A. J. Org. Chem. 1998, 63, 1248-1253.
- For example: (a) Begtrup, M. Angew. Chem., Int. Ed. Engl. 1974, 13, 347–347. (b) Itoh, T.; Hasegawa, H.; Nagata, K.; Ohsawa, A. J. Org. Chem. 1994, 59, 1319–1325. (c) Grimmett, M. In Diazoles, Triazoles, Tetrazoles, and Their Benzo-analogues; Sammes, P. G., Ed.; Comprehensive Organic Chemistry; Pergamon: Oxford, 1979; Vol. 4, pp 357–410. (d) Regel, E. Liebigs Ann. Chem. 1977, 159–168.

^{††} New compounds reported in this communication were fully characterized by HRMS (oily compounds), micro-elemental analysis (crystalline compounds), ¹H NMR, IR, and LRMS.